Folgende 15 Benutzer sagen Danke zu spacious_mind für den nützlichen Beitrag: | ||
AlexS (17.10.2024), bataais (17.10.2024), Belcantor (17.10.2024), Eckehard Kopp (17.10.2024), kamoj (17.10.2024), lars (17.10.2024), Lucky (18.10.2024), MichaelN (17.10.2024), Moonshine (17.10.2024), pato4sen (17.10.2024), paulwise3 (22.10.2024), Robert (17.10.2024), Thomas J (18.10.2024), Tibono (17.10.2024), Viceroy (18.10.2024) |
|
|||||||||||
AW: Odd But True - Seltsam Aber Wahr
Alte Bücher haben einen besonderen Reiz.
Ich habe mir vor einiger Zeit für wenig Geld zwei mehrbändige Herder-Lexika besorgt, das eine ist von 1950, das andere von 1970. Während das 1970er-Lexikon zu jedem Stichwort zahlreiche Details in abgekürzter Sprache darbietet, erläutert die 1950er-Ausgabe jedes Stichwort in vollständigen Sätzen. Das finde ich sehr schön. Die Texte sind dabei oft politisch inkorrekt und haben ein eigenes Gepräge, was mir gefällt. Ja, alte Bücher haben ihren eigenen Charme. Gruß! |
Folgende 2 Benutzer sagen Danke zu Lucky für den nützlichen Beitrag: | ||
kamoj (18.10.2024), spacious_mind (19.10.2024) |
|
||||||||||||
Re: Odd But True - Seltsam Aber Wahr
Hier ist Teil 2 des Themas Odd But True - Seltsam Aber Wahr aus dem 1849 erschienenen Buch Fireside Book of Chess von Irving Chernev und Fred Reinfeld.
Odd But True - Seltsam Aber Wahr 13 G. A. MacDonnell war der Gewinner eines Turniers, das 1868 in London stattfand. Alle Teilnehmer begannen ihre Partien mit der umgekehrten Stellung von ihrer Springer und Läufer. Der Grund dafür? Sie wollten das Buchspiel vermeiden! (Und das war im Jahr 1868!) Odd But True - Seltsam Aber Wahr 14 Es wurden alle möglichen Opfer gebracht, um Schachmatt zu erzwingen; Königinnen, Türme, Springer, Läufer und Bauern wurden geopfert. Aber Dr. Ballard gebührt die einzigartige Ehre, alle seine acht Bauern im Laufe einer Partie zu opfern!
[Event "Odds Friendly Game"]
[Site "England"] [Date "?"] [Round "?"] [White "Ballard"] [Black "Fagan"] [Result "1-0"] [TimeControl "600"] [SetUp "1"] [FEN "rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/R1BQKBNR w KQkq - 0 1"] [Termination "normal"] [PlyCount "59"] [WhiteType "human"] [BlackType "human"] 1. e4 e5 2. f4 exf4 3. Nf3 Be7 4. Bc4 Bh4+ 5. g3 fxg3 6. O-O Nh6 7. d4 O-O 8. hxg3 Bxg3 9. Kg2 Bd6 10. Rh1 Qf6 11. e5 Qg6+ 12. Kf1 Nf5 13. Rg1 Ng3+ 14. Kf2 Ne4+ 15. Ke1 Bb4+ 16. c3 Nxc3 17. bxc3 Bxc3+ 18. Kf2 Qc6 19. Bd3 Bxa1 20. d5 Qb6+ 21. Be3 Qb2+ 22. Kf1 f5 23. Bd4 Qxa2 24. Bxa1 Qxd5 25. e6 g6 26. e7 Re8 27. Qe2 Qc5 28. Qb2 Rxe7 29. Qh8+ Kf7 30. Ng5# 1-0
Weiß hat jetzt alle seine Bauern geopfert und hat ein Matt in 2 Zügen. Odd But True - Seltsam Aber Wahr 15 Anhänger der Philidor-Verteidigung, die wissen wollen, wie der große Franzose selbst die Feinheiten der Verteidigung gemeistert hat, werden vergeblich die Ergebnislisten seiner Partien durchsuchen. In seinem ganzen Leben hat Philidor nie die Philidor-Verteidigung gespielt! Odd But True - Seltsam Aber Wahr 16 „Nur ein oder zwei Bauernzüge in der Eröffnung“, sagt Lasker. Tarrasch sagte: „Nichts ruiniert eine Stellung so leicht wie Bauernzüge“, und scherzhaft zu seinen Schülern: „Zieht nie einen Bauern und ihr werdet nie eine Partie verlieren.“ Steinitz sagt: „Der Königsbauer und der Damenbauer sind die einzigen, die die in der Anfangsphase des Spiels gezogen werden dürfen.“ Aber das Genie kennt keine Einschränkungen; so spielte Marshall zehn aufeinanderfolgende Bauernzüge, gewann eine Figur und später die Partie!
[Event "New York"]
[Site "New York"] [Date "1940.??.??"] [Round "?"] [White "Marshall, Frank James"] [Black "Ragozin, Viacheslav"] [Result "1-0"] [BlackElo "2471"] [ECO "B20"] [Opening "Sicilian"] [Variation "Wing Gambit, Marshall Variation, 1.e4 c5 2.b4 cxb4 3.a3"] [WhiteElo "2454"] [TimeControl "600"] [Termination "normal"] [PlyCount "51"] [WhiteType "human"] [BlackType "human"] 1. e4 c5 2. b4 cxb4 3. a3 Nc6 4. axb4 Nf6 5. b5 Nd4 6. c3 Ne6 7. e5 Nd5 8. c4 Ndf4 9. g3 Ng6 10. f4 Ngxf4 11. gxf4 Nxf4 12. d4 Ng6 13. h4 e6 14. h5 Bb4+ 15. Bd2 Bxd2+ 16. Nxd2 Ne7 17. Ne4 Nf5 18. h6 g6 19. Nf6+ Kf8 20. Nf3 d6 21. Ng5 dxe5 22. dxe5 Qxd1+ 23. Rxd1 Ke7 24. Rh3 b6 25. Bg2 Rb8 26. Ngxh7 1-0
Nicht eine einzige Figur von Marshalls wurde ins Spiel gebracht, und doch hat er ein gewonnenes Spiel! Ragozin spielte 10. ... Ngxf4? und verlor schnell. Die alternativen Züge sind jedoch nicht viel besser.
Nick: Amusant für mich ist, dass Marshall drei Züge später, nachdem er gerade 13.h4 gespielt hatte, alle seine Bauern gezogen hatte und alle seine Hauptfiguren immer noch unbewegt in ihrer Startposition stehen. Odd But True - Seltsam Aber Wahr 17 Zeigen Sie dieses Diagramm jedem Schachmeister! Sagen Sie einfach: „Weiß zu spielen“, und und bevor Sie ihm die Bedingungen erklärt haben, wird er den schwarzen König in fünf Zügen durch ein erdrückendes Matt schlagen.
Der Grund? Es handelt sich um einen der ältesten und schönsten Tricks im Repertoire der Experten. Die Stellung im Diagramm wurde erstmals von Lucena veröffentlicht im Jahr 1496! Die Gewinnidee ist nützlich, da sie recht häufig vorkommt. Nick: Ich habe die Lösung nicht gezeigt, weil ich glaube, dass es Spaß machen könnte, die Lösung selbst zu finden. Odd But True - Seltsam Aber Wahr 18 Beim New Yorker Turnier von 1893 gelang Dr. Lasker ein glatter Durchmarsch. Er gewann 13 Partien in Folge, ohne ein einziges Remis zuzulassen! Aber die Geschichte wiederholt sich. Im New Yorker Turnier von 1913 stand Capablanca ebenfalls 13 Gegnern gegenüber und mähte sie alle in kurzer Folge nieder, ohne ein einziges Remis zuzulassen! KURZE PAUSE! ----------- LOS JETZT! ----------- Odd But True - Seltsam Aber Wahr 19 Beim fünften amerikanischen Meisterschaftsturnier, das in New York stattfand 1880, erreichten Congdon und Delmar eine Stellung, die für Delmar „hoffnungslos gewonnen“ war. Er hatte eine Dame und fünf Freibauern (fünf potentielle Damen, wenn er sie gegen Congdons einzige Dame brauchte). Hat er gewonnen? Es war fast unmöglich, es nicht zu gewinnen, aber genau das ist passiert:
Delmar spielte 1. ... Qc3? (wie es im Turnierbuch heißt: „Fast jeder andere Zug hätte gewonnen“) und Congdon rettete seine Partie mit 2.Qg8+ Kxg8 und Weiß hat eine Pattsituation. Odd But True - Seltsam Aber Wahr 20 Wünschen Sie sich manchmal, Ihr Gegner würde Ihnen erlauben, die Figuren zu bewegen umherziehen lassen, um eine Stellung zu analysieren? Im Jahr 1911 spielten Spielmann und Alapin in München eine Partie, in der Analyse durch das Bewegen der Figuren erlaubt war. Alapin nutzte dieses Privileg; Spielmann entschied sich, dies nicht zu tun. P.S.: Spielmann hat die Partie gewonnen! Odd But True - Seltsam Aber Wahr 21 Eine Schachpartie, in der Weiß und Schwarz theoretisch perfekt spielen, sollte mit einem Remis enden. Die Theorie sollte verstärkt werden, wenn die Spieler selbst Weiß und Schwarz heißen! Im Nürnberger Turnier von 1883 traf Weiss (Weiß) in der fünften Runde auf Schwarz (Schwarz). Das hat sich so zugetragen:
[Event "DSB-03.Kongress"]
[Site "Nuremberg"] [Date "1883.07.18"] [Round "5"] [White "Weiss, Max"] [Black "Schwarz, Jacques"] [Result "1/2-1/2"] [BlackElo "2460"] [ECO "C01"] [Opening "French"] [Variation "Exchange, 4.Nf3 Bd6 5.Bd3 Nf6"] [WhiteElo "2526"] [TimeControl "600"] [Termination "normal"] [PlyCount "54"] [WhiteType "human"] [BlackType "human"] 1. e4 e6 2. d4 d5 3. exd5 exd5 4. Nf3 Nf6 5. Bd3 Bd6 6. O-O O-O 7. Bg5 Bg4 8. c3 c6 9. Nbd2 Nbd7 10. Qc2 Qc7 11. Rfe1 Rfe8 12. h3 Bxf3 13. Nxf3 h6 14. Bxf6 Nxf6 15. Nh4 Rxe1+ 16. Rxe1 Re8 17. Rxe8+ Nxe8 18. Nf5 Bf8 19. Qe2 Nd6 20. Nxd6 Qxd6 21. Qe8 Qe7 22. Qxe7 Bxe7 23. Bf5 Bg5 24. Bc8 Bc1 25. Bxb7 Bxb2 26. Bxc6 Bxc3 27. Bxd5 Bxd4 1/2-1/2
Die Partie wurde zu diesem Zeitpunkt als Remis gewertet. Passenderweise sind die Stellungen von Weiss und Schwarz (oder Weiss und Schwarz) völlig identisch! Odd But True - Seltsam Aber Wahr 22 Herr Edwin Anthony hat einen interessanten Artikel über die Unerschöpflichkeit des Schachs geschrieben, aus dem wir erfahren: Die tatsächliche Zahl der Spielmöglichkeiten auch nur für einige Züge zu schätzen, übersteigt die Möglichkeiten der Berechnung, aber es ist sehr einfach, eine Annäherung an diese Zahl zu erhalten. Nimmt man eine durchschnittliche Eröffnungsvariante, wie sie üblicherweise praktiziert wird, so ergibt sich, dass der erste Spieler 28, 30 und 33 Möglichkeiten hat, den zweiten, dritten bzw. vierten Zug zu spielen; 29, 31 und 33 sind die entsprechenden Zahlen für den zweiten Spieler. Natürlich haben beide Spieler in ihrem ersten Zug eine Auswahl von zwanzig Zügen. Unter der Prämisse, dass die Anzahl der offenen Antworten bei jedem Zug immer gleich ist, unabhängig von den vorangegangenen Zügen, und dass die vorstehenden Zahlen diese Zahlen wiedergeben, würde die Anzahl der möglichen Spielweisen nur der ersten vier Züge auf jeder Seite 318.979.584.000 betragen. Wenn also jemand ohne Unterbrechung mit einem Spielzug pro Minute spielen würde, bräuchte er mehr als sechshunderttausend Jahre, um sie alle durchzuspielen! Die Anzahl der möglichen Spielweisen für die ersten zehn Züge auf jeder Seite in einer Schachpartie beträgt 169.518.829.100.544.000.000.000.000.000. Wenn man davon ausgeht, dass die gesamte Weltbevölkerung 1483 Millionen Menschen umfasst, wären mehr als 217.000.000.000 Jahre erforderlich, um sie alle zu durchlaufen, selbst wenn jeder Mann, jede Frau und jedes Kind auf dem Globus während dieses riesigen Zeitraums ununterbrochen ein Spiel pro Minute spielen würde und kein Spiel jemals wiederholt würde! (Nick: Diese Berechnung basiert auf den Weltbevölkerungsschätzungen aus den 1940er Jahren). Odd But True - Seltsam Aber Wahr 23 Dr. Threlkeld-Edwards aus Bethlehem und Prof. Merriman von der Lehigh University testeten einmal Pillsburys Gedächtnis für andere Dinge als Schach, indem sie ihm diese Liste von Wörtern zum Auswendiglernen gaben: Antiphlogistine, Periost, Takadiastase, Plasmon, Ambrosia, Threlkeld, Streptokokken, Staphylokokken, Mikrokokken, Plasmodium, Mississippi, Freiheit, Philadelphia, Cincinnati, Leichtathletik, kein Krieg, Etchenberg, Amerikaner, Russe, Philosophie, Piet Potgelter's Rost, Salamagundi, Oomisillecootsi, Bangmamvate, Schlechter's Nek, Manzinyama, Theosophie, Katechismus, Madjesoomalops. Pillsbury sah sich die Liste ein paar Minuten lang an, wiederholte die Wörter in der angegebenen Reihenfolge, und dann rückwärts! Odd But True - Seltsam Aber Wahr 24 J.H. Blackburne, der große britische Meister, verkündete einmal in einer seiner Partien ein erzwungenes Matt in 16 Zügen! Das wäre für ein Spiel am Brett schon bemerkenswert genug, aber in diesem Fall spielte Blackburne mit verbundenen Augen! Hier ist die Stellung, in der Weiß am Zug ist:
[Event "Blindfold"]
[Site "England"] [Date "1887"] [Round "?"] [White "J. H. Blackburne"] [Black "Scott"] [Result "1-0"] [BlackElo ""] [Time "09:23:34"] [WhiteElo ""] [TimeControl "600"] [SetUp "1"] [FEN "r5r1/p4p2/2ppb1kp/7N/qp2RPB1/7P/PP1Q1B2/n5K1 w - - 0 1"] [Termination "normal"] [PlyCount "31"] [WhiteType "human"] [BlackType "human"] 1. Rxe6+ Kh7 2. Qd3+ Rg6 3. Qxg6+ fxg6 4. Re7+ Kg8 5. Be6+ Kf8 6. Rf7+ Ke8 7. Nf6+ Kd8 8. Rd7+ Kc8 9. Rxa7+ Kb8 10. Nd7+ Kc8 11. Nc5+ Kd8 12. Rd7+ Kc8 13. Rf7+ Kd8 14. Nb7+ Ke8 15. Nxd6+ Kd8 16. Rd7# 1-0
Nick: In dieser Stellung gibt es ein Schachmatt in 6 Zügen durch 3.Rxg6, also besteht die Möglichkeit, dass Blackburne das Matt in 6 Zügen verpasst hat? Aber ist das wirklich wichtig? Als er mit verbundenen Augen spielte, sah er in seinem Kopf das Matt in 16 mit eine Damenopfer! Extravaganter als Damenopfer gab es bei den damaligen Spielern doch nicht oder? Nick: Es ist nicht sicher, wann diese Partie gespielt wurde, aber laut Edward Winter, dem Historiker und Autor vieler Schachbücher, wurde der erste Hinweis auf diese Partie in der Sydney Mail vom 19. Februar 1887 gefunden. Das Spiel selbst wurde als Erstveröffentlichung auf Seite 211 von Mr Blackburne's Games at Chess von P. Anderson Graham (London, 1899) gefunden. DAS WAR'S FÜR HEUTE ----------- Viele Grüße, Nick Geändert von spacious_mind (20.10.2024 um 18:22 Uhr) |
|
||||||||||||
Re: Odd But True - Seltsam Aber Wahr
Ich weiß nicht, ob noch jemand eBooks ausprobiert hat. Ich habe vor kurzem angefangen, sie auszuprobieren, und ich habe herausgefunden, dass sie sehr nützlich und bequem sein können, wenn man die Spiele in einem Buch auf einem Computer verfolgen möchte.
Es wird nie ein echtes Buch ersetzen, aber wenn man am Computer lesen und Analysen verfolgen will, ist es wirklich gut. Ich habe das Fireside-Buch, über das ich hier gepostet habe, als EBook gefunden, und hier können Sie sehen, wie ich eine Partie durchspiele aus dem Buch, während ich das Buch lese und gleichzeitig eine Analyse mit Bearchess mache. Der eBook-Reader, den ich benutze, heißt Okular, der von Gnu lizenziert wurde und daher völlig kostenlos ist, und er ist einfach ein großartiges Werkzeug. Gruss Nick |
|
|
Ähnliche Themen | ||||
Thema | Erstellt von | Forum | Antworten | Letzter Beitrag |
Hilfe: Kann das wahr sein? Kein Spielstandspeicher bei MMV, RomaII und MMI? | Chessagent | Technische Fragen und Probleme / Tuning | 32 | 18.05.2022 10:26 |
Frage: TM ja, aber welche... | voelkx | Technische Fragen und Probleme / Tuning | 4 | 22.11.2021 14:11 |
Partie: Polgar spielt seltsam | Doubledizzy | Partien und Turniere / Games and Tournaments | 11 | 29.11.2016 14:52 |
Frage: Schachcomputer, aber welcher | gaby | Die ganze Welt der Schachcomputer / World of chess computers | 41 | 21.02.2010 15:42 |
Vorstellung: So, nun aber... | hmchess | Vorstellung / Presentation | 9 | 23.10.2007 17:50 |